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FLUX AT A POINT IN MCNP

E. D. Cashwell and R. G. Schrandt
Group X-6
Monte Carlo, Applications and Transport Data Group
Theoretical Applications Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

ABSTRACT

The current state of the art of calculating flux at a
point witn MCNP is discussed. Various techniques are touched
upon, but the main emphasig is on the fast improved version
of the once-more-collided flux estimator, which has been
modified to treat neutrons thermalized by the free gas
model. The method is tested on several problems of interest
and the results are presented.

INTRODUCTION

The next-event estimator (NEE) used in a normal Monte Carlo game
for the flux at a detector embedded in a scattering medium suffers from
a (l/rz)-singularity. Consequently, the variance of the estimator is
infinite even though the mean is finite.

In 1977, Kalli and Cashwelll proposad and evaluated three
estimation schemes for flux at a point. A new, once-more-collided flux
estimator (OMCFE) was proposed, which differed from those proposed by
Kalos in his oriazinal paper.z The scheme has a (1/r)-singularity,
leading to finite variance and (1/VN)-convergence. It is based on a
very simple p.d.f. of the path lengths in the sampling of the
intermediate collision points. In addition, thia simple p.d.f. for the
path length was used in two schemes with bounded estimators similar to
those proposed by Steinberg ani Kalos3 and by Steinberg.“ The three
schemes were evaluated in a realistic problem using the continuous
energy Los Alamos Monte Carlo code MCNG, the forerunner of MCNP.

Once-More Collided Flux Emtimator (OMCFE)

In the present discussion we wish to focus on the OMCFE refarred to
above. This scheme has been incorporated into MCNP and, although some
work still remains to be done, we wish to discuss this method in
conjunction with other techniques available in MCNP.



The details of the OMCFE as it exists in MCNP are, for the most
part, given in Ref. (1). Without repeating the treatment given there,
we wish to touch on the main points of the method, as well as mention
generalizations of the method to a wider class of problems. The OMCFE
is superimposed on the particle history without affecting it. At each
collision (or source point), a nonanalog game is played whereby a next
collision point A is chosen, from which a contribution to the detector
is made. That is, from every real collision point of the particle
history, a once-more-collided contribution is made to the detector.

The two main features in determining the intermediate point A of
the once-more-collided scheme are:

1. A directional reselection procedure based on the reselection
technique of Steinberg and Kalos;3 and

2. A nonanalog p.d.f. p*(s) which was used by Kalli® tn 1972.

In Fig. 1, consider a collision at S with the resulting scattered ,
direction ﬁo in the cone described. Suppose that a new direction §i) 1s
chosen by sumpling a new angle 81 uniformly in ((,fp) and a ¢; uniformly
in (0,2m). The result is a concentration of scat:iered directions closer
to the line from S to the detector D than would normally occur. Of
course, an adjustment factor must be applied to the weight of the
particle due to the reselection.

Once the direction 51 18 chosen. suppose the intermediate point A
is selected along this direction from the p d.f. p*(s), where

ph(s) = — -~
(n/2 - u])r

(Cf. Fig. 2). (1)

This density function corresponds to & being chosen uniformly in
(01,1/2). Use of p*(s) leads to another weight adjustment p(s)/p*(s),
where p(s) is the analog p.d.f. for sampling distance to collision.

In the normal OMCFE, the point A is not a real collision polnt of
the particle history. When these calculations involve reselection of
direction and the distance to A using p*(S), as well as the normal
next—-event estimator, they tend to be time-consuming. In order to speed
up celculations using the OMCFE:

1. Draw an imaginary sphere around the detector;

2. 1If the collision point S; is outside the sphere but the
direction after the collision is within the cone defined by S; and he
sphere, calculate the once-more-collided flux contribution by performing
the directional reselection in the cone and calculate the intermediate
poirt A by using p*(3);



Fig. 2. Geometry in the selec-
Fig. 1. Geometry in the re- tion of the intermediate col-
selection of a direction. lision point A.

3. If the collision point S; is in the sphere and the direction §o
after collision is in a 2-.-cone (i.e., B, < m/2) about the line from S
to D, the once-more-coll:ded point is calculated by reselection of 51
and using p*(s) to determine the intermediate point A; if the dirertion

after collision is such that B, > T/2, no reselection is performed
but the intermediate point A is chosen from p*(s); and

4. Otherwise, calculate the no:mal next—event cuntribution from
the following collision point Sy4)-

The recipe as outlined above works very well in most problems
containing ordinary materials. However, in non-thermal problems
containing H, the forvard scattering off H in the laboratory system of
coordinates lead to some modification of the recipe because of the
directional reselection procedure, Furthermore, the random motion of
the target atoms combined with the motion of the neuttron in the thermal
routine using the free gas model in MCNP leads to rather extenaive
modifications for the same reasoi. The imaginarv sphere arcund the
detector may have to be reduced in size in the course of the
calculation, as a reamult of using the reselecticn procedure.

With the neceussary modificatious, MCNP ie able tuv treat problems of
the types mentioned czbcve, as 1llustrated by Lhe sample calculations
below. Several cousiderations led to the implementation of the OMCFE
rather than one cf the schemes leading to a bounded estimator in Ref.
(1). Firet of all, the OMCFE was judged to be the simplest to insert
into MCNP. Furthermore, the estimation of flux simultareously at
several points causes no problems in the OMCFE scheme. Finally, siuce
the OMCFE does not alter the particle histories, its use ..as no effect
on other tallies which may Le required in a particular problem.



DXTRAN

Let us describe briefly a subroutine, DXTRAN, which has been used
in Los Alamos for some years and is an option avallsble in MCNP.J Ve
shall indicate its usefulness in our examples below. DXTRAN is of value
in sampling regions of a problem which may be insufficiently visited by
particle histories to yield adequaie statistical accuracy in a given
tally. To explain how the scheme works, let us consider the
neighborhood of interest to be a spherical region surrounding a
designated point P, in space. In fact, we consider two spheres of
arbitrary radii about the point Py(x,,Y9,20): We assume thkat the
particle having direction {(u,v,w) collides at the point (x,y,z), as
shown in Fig. 3. The quantities L, 61, 645, N1, Ng» Ry, and R, are
clear from the figure. Let us acmehow choose a point Py, on the outer
sphere and asaume that a scattered particle (let us call it a
"pseudo-particle” for the moment) is placed there. We give this pseudo-
particle a weighkt equal to the weight of the incoming particle at P;
multiplied by the ratio of the p.d.f. for scattering from P; to Pg with
no collision to the p.d.f. for choosing the point P, in the first place.

If we sample directions isotropically in the cone defined by P; and
the outer gphevre, the number of directions falling inside the inner cone
and the number falling in the outer cone will be proportional to 1l-ng
and ny=ny» respectively. Let Q be a factor which measures the wejght
or importance which one assigns to scattering in the inner cone relative
to scattering in the outer cone. We now proceed by the following steps:

line of flight ot
incominp particle (u,v,w)

Pl(n.y.z)

Fig. 3. The geometry of DXTRAN.



1. Sample n uniformly in (ny,1) with probability Q(1l-ny)/[Q{1-ny)
+ N1-Ngy); and with probability (nr-ny,)/[Q(1-ny) + ny-n,] sample n
uniformly in (ng.ny);

2. Having chosen O from n = cos 6, we use the scattering formulas
in the code to scatter through an angle € (and an azimuthal angle ¢

L "L ' 1L
determining a new direction (u',v',w'). Advance the pseudo-particle in

the direction (u',v',w') to the point P, on the surface of the outer
sphere. The new coordinates are saved;

X "X YTy 2 -2
chosen uniformly in (0,27)) from the initial direction ,

3. The weight attached to the pseudo-particle is the weight of the
particle at collision multiplied by

P
s
PGHLQQ = ny) + ny - nig) expd- f " (8) d

"

. —_— TI<T'<1
v Q ’ 1

and

8
v PO - n]) +ng - '10] expd- f .‘.t(s) dey, Ny <n- no

"

where
How uu' + vv' + we”
P()) = p.d.f. for scattering through the angle cos”ly in the 1lab
system for the avent sampled at (x,y,2).
V = number o neutroud emitted from the event.

Since a collision sgupplie: a particle (let us now drop the term
pseudo-particle - these particles are as real as any others) to the
outer DXTRAN sphere, the particles from the collisiou at P} are picked
up and followed further, but they are killed if they attempt to enter
the sphere. It is apparent from the discussion above that this routine
has certain features in common with a point detector rcutine.

This routine is used 1in a couple of the problems discussed below.
In one problem, it is used to obtain the average flux in a small volume
as a check against the result obtained from the OMCFE. In another, it
193 used to help get particles in the vicinity of a detector. While
DXTRAN can be ugeful in many problems, it must ba pointed out that the
mcthod is time-consuming, being similar in nature to a point detectcr
routine, Further, attention must be paid to the problem of obtaining a
gufficiant number of histories in the vicinity of the DXTRAN sphere, not
just inside the asphere,



CALCULATIONS

The problems discussed below were chosen to demonstrate the
behavior of the OMCFE in a variety of gsettings, with some emphasis on
the treatment of H and, in particular, its behavior in the presence of
neutrons thermalized ancording to the free gas model. Illustrations of
how DXTRAN can be useful, either as an aid to the OMCFE or as an aid in
computing the average flux in a region with a track-length estimator,
occur in two of the problems.

The geometries displayed in our problems are deliberately kept
simple, partly so that we can display the so-called "exact flux", which
is calculated very accurately (to a fraction of a percent) using a
surface crossing estimator in the spherical geometry. In the schematics
showing the geometry used, not every surface appears. Frequently,
additional surfaces were added for the purposes of splitting and Russian
roulette, or {c¢r the purpose of obtaining average flux in a region, but
few surfaces were added in any one calculaticn.

In each problem, the source at the center of the sphere was chosen
to be monoenergetic anc¢ isotropic in direction. As easily anticipated,
it was found useful to use an exponential biasing to direct more
particles toward the detectors. The latter were always placed on a
radius of the sphere - say the positive x-rxis. The iInitial flight of a
neutron was chosen by sampling u, the cosine of the angle the starting
direction makes with the x—axis, from a p.d.f. ™ ekU, with k a fixed
parameter. The value of k used in each problem is listed on the
schematic for that problem.

A feature of MCNP which was used in these calculations has to do
with contributions to the detector D from collisions several free paths
from the detector. E.g., when collisions occur more than x free paths
from D, by playing Russian roulette one can permit, say, only one in ten
collisions on the average to contribute to D, with weight enhanced by a
factor of ten. The number x is set by the user and in these
calculations was usually set to four. This feature of the code can save
appreciable amounts of machine time in large systems.

Other information on the schematic which is of interest include the
number density of aioms in the material used; the thermal temperature of
the problem (if any,, the average m.f.p. A , computed by MCNP over the
course of the problem ; the source cnergy and energy cut-off (if any);
the tine on the CDC-7600 for a given sample of starting neutrons; and
the imaginary sephere radii used in the OMCFE and in DXTRAN.

Figs. 4~12 display the geometries and g-aphs of the results for
four problems. Table 1| gives a comparison of the final flux values at
the end of each run with the "exant values”. The errors in the final
fluxes also appear.



H
No. atoms/cm?® = 0025 x 10™
Thermal temp. = 25 x 10® MeV
A ~168 cm

\\,'
Isotropic source at (0,0,0) Detectors
Energy = 40 x 10" MeV OMC sphere "

Exponentially biased toward
delectors, with k = 056

Fig. 4 Geometry for Thermal Hydrogen Problem.
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CH,
No. atoms/cm?® = 0.118 x 10™
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Fig. 7 Flux at Two Detectors in
Thermal CHz with the OMCFE.




BeO-1
No. atoms/cm® = 0.144 x 10%
A~ 175 cm
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= 20 em
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detector, with k = 0.75 = 11 20 cm

particles
particles
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Fig. 8 Geometry for BeO-1 Problem.
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Fig. 9 Flux at a Detector in BeO-i
with the OMCFE.
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Fig. 10 Average Flux in the Vicinity
of a Detector in BeO-1 Using DXTRAN.
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Fig. 11 Geometry for BeO-2 Problem.
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Fig. 12 Flux at a Detector in Be0-2
with the OMCFE and DXTRAN



TABLE I
Comparison of Calculated Flux with vLxact Flur

Flux
(n/cm?/source particle)
Exact OMCFE Ave. Flux Error
(Surface Crossing (Track lTength{(l Standard
Estimator) Estimator) |Deviation)

Thermal H: Detector 1|| 3.462 x 10~ 3.486 x 1072 .056 x 10™2
Detector 2i[ 1.230 x 10~2 1.231 x 10~2 .032 x 10~2

Thermal CHp: Detector 1(| 2.086 x 107! 2.122 x 107} .053 x 1071
Detector 2|| 6.259 x 1072 6.378 x 1072 .357 x 1072

BeO - 1: Detector 1j| 1.703 x 10~2 1.697 x 10~2 .015 x 10~2
Detector 1|| 1.703 x 102 1.687 x 10~2],022 x 10-2

BeO - 2: Detector 1}]| 7.207 x 10™4 7.412 x 10~4 .185 x 10~%

]

-




In Problem 1 the fiuxes at two detector points in thermal H are
calculated using the OMCFE. Problem 2 is a similar calculation in
thermal CHy. 1In Problem 3, the flux is calculated at a single detector
in a sphere of BeO (non-thermal) for a source of 1 MeV neutrons at the
center. The flux is first obtained using the OMCFE, and this is
compared with an estimate of the average flux in a sphere abut the
detector of 1 cm radius. The latter estimate is obtained with the help
of DXTRAN. Problem 4 finds the flux at a point in a BeO sphere situated
approximately 6 free paths from the source using the OMCFE, but with the
ald of a large DXTRAN sphere which encloses the detector. The
error-bars (one standard deviation) on the points plotted indicate the
statistical accuracy of the calculation in progress, as printed out by
the code. The final results are, in every case, within a few percent of
the value of the "exart flux" - in fact, the agreement appears somewhat
better than expected in at least one case. For example, in the Be0-1
calculation the agreement between the exact flux and that obtained from
the average flux in a sphere of l-cm radius using DXTRAN 1s surprisingly
good. Perhaps that is fortuitcus - experience does not lead one to
expect it in the average problem. The amount of computing time used
could have been reduced in some cases without altering the results
appreciably, but in dealing with estimates of flux at a point, it pays
to be reasonably cautious. Quite frequently, the calculation is
sensitive to the various parameters set in a problem - the size of the
imaginary sphere in the OMCFE, the source blas. etc. Some care is
essentlal in setting up a problem and & few short runs can be invaluable
in making the necesrary decisions, particularly in the case of a
difficult problem.

Concluding Remarks

A very important method of estimating flux at a point in a problem
vith axial symmetry is through the use of a ring detector. MCNP
contains a ring detector option and, although we did not use it in the
nresent calculations, it should be mentioned as one of the tools
available.

While the OMCFE in MCNP can deal with neutrons thermalized
according to the free gas model, there remains the task of wodifying the
flux estimator to be compatible with neutrono thermalized with the
S(a,R) treatment. It is hoped that this defect can be rectified in the
not too distant future.
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